DEX-1 and DYF-7 Establish Sensory Dendrite Length by Anchoring Dendritic Tips during Cell Migration
نویسندگان
چکیده
Cells are devices whose structures delimit function. For example, in the nervous system, neuronal and glial shapes dictate paths of information flow. To understand how cells acquire their shapes, we examined the formation of a sense organ in C. elegans. Using time-lapse imaging, we found that sensory dendrites form by stationary anchoring of dendritic tips during cell-body migration. A genetic screen identified DEX-1 and DYF-7, extracellular proteins required for dendritic tip anchoring, which act cooperatively at the time and place of anchoring. DEX-1 and DYF-7 contain, respectively, zonadhesin and zona pellucida domains, and DYF-7 self-associates into multimers important for anchoring. Thus, unlike other dendrites, amphid dendritic tips are positioned by DEX-1 and DYF-7 without the need for long-range guidance cues. In sequence and function, DEX-1 and DYF-7 resemble tectorins, which anchor stereocilia in the inner ear, suggesting that a sensory dendrite anchor may have evolved into part of a mechanosensor.
منابع مشابه
Sensory Dendrite Length by Anchoring Dendritic Tips during Cell Migration
Constructing the dex-1(ns42); dyf-7(ns117) strain The dex-1(ns42); dyf-7(ns117) strain was generated using the genetic balancer hT2[qIs48], a homozygous lethal translocation marked with myo-2pro:GFP, pes10pro:GFP, and ges-1pro:GFP (Miskowski et al., 2001), to derive a strain of genotype hT2[qIs48]/+ I; hT2[qIs48]/dex-1(ns42) III; dyf-7(ns117) X. When cultivated at 20°C, this strain showed 100% ...
متن کاملRegulation of Dendritic Filopodial Interactions by ZO-1 and Implications for Dendrite Morphogenesis
Neuronal dendrites dynamically protrude many fine filopodia in the early stages of neuronal development and gradually establish complex structures. The importance of the dendritic filopodia in the formation of axo-dendritic connections is established, but their role in dendrite morphogenesis remains unknown. Using time-lapse imaging of cultured rat hippocampal neurons, we revealed here that man...
متن کاملIntrinsic mechanisms to define neuron class-specific dendrite arbor morphology.
The class-specific transcription factors Knot and Cut act during dendrite arbor development to define the characteristic dendrite branching pattern of the Drosophila class IV dendritic arborisation sensory neurons. Knot mediates dendrite arbor outgrowth and branching via a microtubule-based program that includes upregulation of the microtubule severing protein Spastin. On the other hand, Cut pr...
متن کاملIntegrins Establish Dendrite-Substrate Relationships that Promote Dendritic Self-Avoidance and Patterning in Drosophila Sensory Neurons
Dendrites achieve characteristic spacing patterns during development to ensure appropriate coverage of territories. Mechanisms of dendrite positioning via repulsive dendrite-dendrite interactions are beginning to be elucidated, but the control, and importance, of dendrite positioning relative to their substrate is poorly understood. We found that dendritic branches of Drosophila dendritic arbor...
متن کاملCut, via CrebA, transcriptionally regulates the COPII secretory pathway to direct dendrite development in Drosophila.
Dendrite development is crucial in the formation of functional neural networks. Recent studies have provided insights into the involvement of secretory transport in dendritogenesis, raising the question of how the secretory pathway is controlled to direct dendritic elaboration. Here, we identify a functional link between transcriptional regulatory programs and the COPII secretory machinery in d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cell
دوره 137 شماره
صفحات -
تاریخ انتشار 2009